
Enabling Sensor Webs by Utilizing SWAMO for
Autonomous Operations

Kenneth J. Witt, Jason Stanley, David Smithbauer
WVHTC Foundation

kwitt, jstanley, dsmithbauer @wvhtf.org

Dan Mandl, Vuong Ly
NASA Goddard Space Flight Center

dan.mandl, vuong.ly @nasa.gov

Al Underbrink, Mike Metheny
Sentar, Inc.

aunderbrink, mmetheny @sentar.com

Abstract-The concept of sensor webs will require a certain

amount of underpinning to enable the interaction of the various
constituent components. The SWAMO project is providing an
intelligent agent based framework for allowing sensor systems
to intercommunicate via standard interfaces such as SensorML,
Sensor Web Enablement standards, and web service calls. The
culmination of the project will allow for the discovery of sensing
assets, query capabilities, requesting task feasibilities, and even
charge the system with direct tasking. This paper describes the
work to date on designing and prototyping this framework.

I. INTRODUCTION

This document will describe the intent and the current
status of the SWAMO research project. The NASA Earth
Science Technology Office (ESTO) Advanced Information
Systems Technology (AIST) program on Sensor Webs funds
SWAMO. The period of performance for the project is
September 2006 – August 2009. SWAMO is roughly
halfway through its period of performance and has
significant findings to report related to the status of the
architecture development and the use of SWAMO on
existing spacecraft. This document will also contain
information on how the SWAMO architecture matured from
its original baseline concept of Model Based Operations.
Background information covering MBO and its
implementation on previous NASA spacecraft (Space
Technology 5 (ST5)) will also be covered to provide context
for the current evolution of the SWAMO architecture.

II. BACKGROUND

Today’s missions within the NASA environment are
faced with ever increasing complexity in the form of
multifaceted science goals and constellations of spacecraft.
There is also the need to reduce the operational costs
inherent in operating spacecraft. While these goals seem to
be at odds with each other, there are emerging technologies
that address both goals, while increasing flexibility of
mission application.

As scientists strive to further their fields, often they
desire to utilize satellite assets in manners for which they

were not originally designed but which they are fully capable
of performing. ‘System-of-systems’ is a pervasive concept
within the Sensor Webs paradigm. Elements can be bound
together for the benefit of another, more over-arching
system. Each system has a particular task, or set of tasks, that
it can perform. By combining the outputs or results from
several systems, new products can be derived.

There are several efforts involved with implementing the
system-of-systems. The first is the consistent, predictable
break-down of tasks into more atomic, achievable parts. The
second is the fusion process of assembling the results into the
desired output.

While the task of creating such a complex system is
indeed daunting, the portion being addressed within our task
is achievable. SWAMO is inherently involved with the
scheduling, planning, and conflict resolution that occur in a
system-of-systems environment. The atomic functionality is
established by the system itself and is known or described to
the super-system. Our work is involved with the attempt to
‘fit’ new tasking into the system’s plan of activities. This
aspect is performed autonomously, yielding an inherently
more flexible system.

The SWAMO development team has experience
developing such system-of-systems based on the concept of
Model Based Operations (MBO). Our team implemented the
MBO concept to support autonomous operational control of
the ST5 mission. This MBO implementation is named the
Real-time Object Modeling Executive (ROME). ROME was
utilized by ST5 to support autonomous, “lights out” control
of the ST5 three-satellite constellation. SWAMO is an
extension of the ROME framework and MBO concept that
transfers the control from a centrally controlled ground
system to a distributed Sensor Web of intelligent agents
performing autonomous mission management both on board
the spacecraft and from the ground. MBO, the underlying
communication infrastructure based on Message Oriented
Middleware (MOM), and software bus publish/subscribe
message delivery are discussed in more detail below.

A. Model Based Operations
MBO is a concept that creates system-of-systems by

enabling interoperability among mission operations,
intelligent and autonomous systems, and end-to-end life
cycle technologies for diverse future exploration
applications. An MBO approach to future mission
development, from concept to operations, promotes software
reuse, system expandability, and life cycle cost savings.

The concept of MBO, as shown in Figure 1, utilizes
models of the spacecraft, or system, being managed. The
models are used to simulate and predict the system state for
planning purposes. MBO is designed to be a bottom-up
methodology that utilizes only the models necessary to
manage the determined constrained resources. This contrasts
with the traditional approach of developing an entire system
model and maintaining it throughout the lifetime of the
mission. Using MBO, the mission chooses which constrained
resources to manage, and models them. If management needs
appear during operations, additional models may be added as
necessary. Likewise, models can be removed from the
system without detrimental impact. The MBO architecture
can provide the following benefits;
1) MBO is an advanced software modeling, simulation and

visualization framework supporting simple to complex
models of spacecraft subsystems developed in
evolutionary stages throughout design lifecycle and
deployed in operations.

2) Models developed throughout the system design process
migrate seamlessly into operations. Redundancy is
minimized while fidelity and historical traceability of
systems is improved.

3) Detailed models of a complex system provide continuity
during system design phase, implementation, integration
and test phase, and throughout a system’s operational
phase.

4) Models autonomously update states using live telemetry,
allowing for a predictive environment utilizing inter-

model communication. This helps operators manage
complex interfaces among in-space and ground systems
as performance of subsystems changes or degrades
throughout mission life.

5) MBO fuses existing mission support frameworks
including NASA Goddard Space Flight Center (GSFC)
developed software bus architectures. 

B. Software Bus Architectures
Software bus architectures are being widely adopted at

NASA GSFC for use in satellite mission control centers.
These architectures allow for plug and play capabilities of
mission control systems in the operations center. Missions no
longer need to develop dedicated interfaces between all of
the systems in the operations center.

By utilizing a software bus architecture that allows
systems to publish and subscribe to relevant data, missions
can concentrate on implementing higher-level requirements.
Mission control applications can also be updated to newer
versions with very little impact to the system as a whole.
Applications must only develop an interface to the software
bus to interact with all applications in the operations center.
A view of the shift from dedicated one-to-one interfaces to a
middleware publish/subscribe system is shown in Figure 2.
C. ROME on Space Technology 5

The ST5 mission was a project within the NASA New
Millennium Program operated at NASA/GSFC for a three-
month period after launch on March 22, 2006. The purpose
of the project was to validate a number of technologies
including the MBO approach for autonomous mission
operations support. ROME was utilized on ST5 to support
the autonomous mission control requirements. ROME
managed subsystem models (Power, Solid State Recorder,
and RF Link) for each of the three ST5 spacecraft to perform
predictive spacecraft state analysis. Results of the analysis
were fed back to the mission control planning system for
possible rescheduling and re-tasking of the spacecraft to
avoid violations of constrained resources. ROME helped ST5
satisfy one of its mission requirements for 1 week of “lights
out” operations where no human operators actively managed
the three spacecraft. For more information on ROME and its
operation on ST5, please see the references.1-3

III. SWAMO ARCHITECTURE OVERVIEW

The goal of SWAMO is to shift management and control
of missions to a distributed set of intelligent agents versus a
centrally controlled architecture, especially with application
to Sensor Webs. The network of intelligent agents will
reduce management requirements by utilizing model-based
system prediction and autonomic model/agent collaboration.
These agents are distributed throughout the operational
environment to monitor and manage spacecraft systems.
Some of the intelligent agents are mobile and thus will be
able to traverse between on-orbit and ground-based systems.
Other agents in the network are responsible for encapsulating
system models to execute simulations of the modeled
subsystems and components to which they are assigned.
Using situational awareness, the agents will be able to
negotiate activities to self-optimize their subsystem or
component. Furthermore, presented with a set of system

Figure 1. Model Based Operations

Figure 2. Dedicated interfaces versus software bus

goals, the network of agents will collaborate within the
system to arbitrate the best set of activities to achieve a more
global set of goals.

Within the web of agents, there will be specialized agents
responsible for different tasks. Besides being broken into
separate functional responsibilities, agents are also separated
into different levels of scope. These responsibilities apply to
agents that exist at the system level and to those that exist on
the platform specific level. System wide agents will need to
break tasks down into subtasks to be handled at the platform
level. Platform specific agents are first responsible for
managing their platform, and for accomplishing sub-goals
dealt to them from higher level agents. All agents must be
able to communicate to their peers in the system to
accomplish each goal. The characteristics of encapsulation
and abstraction are guiding principles in the design of the
SWAMO architecture. It is clearly understood that SWAMO
agents will interact with many and varied operating systems,
communication mechanisms, and hardware platforms. By
designing our system to implement functionality at distinct
boundary interfaces, it will become easier to adapt to new
environments.

Users and systems interfacing with SWAMO are
insulated from implementation details. They need only
support the external interface and may treat the rest of the
system as a black box. “I want XXX” is the request, and the
system does the rest. “Here is your XXX” or “The system
cannot provide XXX” is the response.

On the inside, SWAMO utilizes agents over a messaging
bus fabric that in turn bridges to other platforms, sensors, and
resources. Various layers prevent SWAMO from being
dependant on any one implementation of a message delivery
system. The message delivery system, in turn, deals with the
nuances of getting the data to and from the various
constituent components at the hardware level. By
encapsulating the various layers and interfaces, SWAMO
becomes easily usable, accessible and understandable by
external users and systems.
A. Distributed Operations

The SWAMO development team is separated over three
locations; Sentar Inc., Huntsville, Alabama; WVHTC
Foundation, Fairmont, WV; and GSFC, Greenbelt, MD.
Each of these locations contains computing resources for
hosting agents, flight hardware simulators, and interfaces to
space assets. Because of the geographically separate
locations and non-heterogeneous ground and flight
platforms, a distributed operational environment is inherent
to the SWAMO Sensor Web. One of the main goals for
SWAMO is to utilize distributed environments to support
mission operations instead of the traditional centrally
controlled operation center. SWAMO utilized the disparate
geographic locations of the development team to act as
distributed control centers that perform management of
multiple flight assets. A requirement of distributed
operations is seamless communication between all entities
that exist in the operational environment. Networking
infrastructure and a software bus messaging interface were
developed to provide the capability for all components of the
sensor web (systems, agents, users, etc.) to communicate
throughout the distributed environment. The infrastructure
supports the publish/subscribe communication paradigms

allowing for peer-to-peer and one-to-many communication.
It also allows for user access to the system both locally and
remote via a thin client interface. This interface will provide
the capability for users and operators to query the SWAMO
sensor web for status and capabilities as well as request
science goals to be executed. To support the communication
infrastructure the SWAMO Software Bus was created to
provide a generic interface to all agents and systems
throughout the Sensor Web.
B. SWAMO Software Bus

The SWAMO Software Bus is a generic messaging data
bus application programming interface (API) that supports
SWAMO Sensor Web agent and system communication.
This messaging API is platform independent and is utilized
by agents existing on both ground and flight based operating
systems including Windows, Linux and VxWorks. This
interface provides the capability for the SWAMO agents to
publish and subscribe to all members of the sensor web
regardless of location.

The SWAMO Software Bus not only provides platform
independence, but it also hides the underlying type of MOM
API utilized on the given platform. SWAMO currently
utilizes two different MOM based technologies; one for
ground systems, Goddard Mission Services Evolution Center
(GMSEC), and a light weight software bus middleware API
designed for flight software (FSW) applications, Core Flight
System and core Flight Executive (CFS/cFE). Both of these
products were developed at GSFC and have proven
performance on NASA missions.

Our development team has experience implementing
systems and applications that utilize both the GMSEC and
CFS/cFE APIs on previous NASA missions, which allowed
easy integration into the SWAMO Bus Architecture.
However, the SWAMO Software Bus is not locked to these
technologies and has the ability to quickly add new adapters
for additional software bus and middleware interfaces.

The successful development of the SWAMO Software
Bus allows our team to develop agents, systems, and user
interfaces to a single messaging API. The API adapters take
care of converting SWAMO messages to the appropriate
GMSEC or cFE bus interface based on where the agent is
residing (ground or space). The SWAMO Software Bus was
developed in C/C++ to take advantage of the C/C++
interfaces that are available through GMSEC and cFE.
C/C++ standard libraries are also highly compatible with
standard ground and flight based operating systems
(Windows, Linux, and VxWorks).
C. SWAMO XML Message Definitions

A standard set of SWAMO XML-based messaging
definitions was created to provide a common language for
the agents to use for communicate over the software bus. The
messaging definitions are split into several types that
encapsulate agent and sensor web functions including;

1) Event Message – utilized by agents to broadcast
events to the framework that may be of importance to
other agents to initiate actions.

2) Log Message – provides the ability for agents to
broadcast system health, status, and message receipts
to the framework for monitoring purposes.

3) Request Message – allows agents to request services
from other agents in the framework, used for peer-to-
peer interaction.

4) Reply Message – to complete peer-to-peer
communication agents can send this message to reply
to requested services with request status and resultant
data.

5) Mnemonic Value Messages – this message type
encompasses request, reply, and data messages that
support telemetry mnemonic distribution to all agents.
Agents utilize the Mnemonic Request to request
values; Mnemonic Reply for retuning request status;
Mnemonic Data to contain telemetry values.

D. SWAMO Models
In the SWAMO architecture, a model is a physical,

mathematical, or otherwise logical representation of a
system, entity, phenomenon, or process. Models are used for
a variety of settings, such as simulations, to make technical
and managerial decisions. Generating output from a model
requires simulation. So in the case of a satellite operating in
space, models can be built to represent the behavior of the
whole satellite system or some of its subcomponents.

SWAMO utilizes models in two modes of operations,
predictive and reactive. Predictive models are built to
simulate future events and states, allowing other systems or
agents within the framework to make corrective decisions
based on the predicted information. Reactive models are
utilized to monitor the current state of a system and perform
immediate action based on near real-time events.

All models that exist in the SWAMO Sensor Web are
built to a single interface definition. This allows agents to
initialize, simulate, interrupt and retrieve results from any
model without knowledge of the models function or intent.
This also allows for “plug and play” of models into and out
of the Sensor Web. SWAMO users can build models based
on need and requirements; there is no constraint to model
complexity except for the computing hardware limitations
upon which the model will be exercised.
E. Flight Platforms and Simulators

Our development team is utilizing subsystem models of
the flight platforms and flight simulators that are available to
the project. The flight platforms that are being used include
the ST5 FlatSat, two VxWorks flight hardware simulators,
and the on-orbit MidSTAR satellite.

F. SWAMO Agents
Responsibility for the management of the resources that

make up the Sensor Web will rest with a network of
intelligent agents. Principle functions of the agent framework
include; agent and system job tasking, resource availability
determination, platform planning and scheduling, model
availability management/simulation, telemetry stream
decommutation, agent telemetry mnemonic delivery, and
flight platform commanding for health maintenance and
recovery. The SWAMO development team has identified
several agent types that will be assigned these
responsibilities. Additional management responsibilities, as
well as previously defined unpractical tasks, may be
discovered during the implementation of the SWAMO
Sensor Web. New agent types can be created and
responsibility assignment to specific agents can be changed.
These attribute adjustments are easily made by plug and play
nature of the agents and their capabilities provided by the
SWAMO framework. The following is the current list of
SWAMO agents and their high level responsibilities;

1) Planning Agent – maintains platform timeline and
provides notification of command events.

2) Resource Agent – monitors active resource use for a
given platform.

3) Execution Agent – initializes, executes, and packages
output of SWAMO models.

4) Reporting Agent – provides external interface to
SWAMO data including events, health status, and
model output.

5) Executive Agent – responsible for high level goal
decomposition and task dissemination.

6) Repository Agent – manages discoverable registry of
agent types, model types, and message types.

7) Telemetry Agent – handles telemetry stream parsing,
mnemonic value data distribution, and bus-to-bus
bridge connection.

IV. SWAMO ARCHITECTURE STATUS

Approximately halfway through the period of
performance for the SWAMO project several significant
achievements have already been completed. Substantial
progress has been made with the development of the
SWAMO architecture and its functional capabilities
including network connections between the development
team facilities, development and integration of models based
on spacecraft subsystems, and iterative deployment of agents
to perform management and monitoring functions of the
SWAMO Sensor Web. To demonstrate the functions of the
SWAMO architecture several Use Case scenarios were
created that take advantage of existing SWAMO agents,
models and currently available flight platforms/simulators.
A. Distributed Network Setup and Software Bus Bridge

Network infrastructure connections were created to
support closed loop communication between the
development team facilities. The networking hardware is
housed at the WVHTF facility in Fairmont, WV, and allows
for connections from NASA GSFC and Sentar Inc, to the
SWAMO Software Bus routing hardware, flight simulators,
web interface, project website, ftp site, and source code
version control tools. The network is secure to protect the
integrity of the equipment and data existing on the network.

Figure 3. Interface layers in SWAMO

Figure 3 references the high-level stack view of the SWAMO
Software Bus Messaging API. The API was completed
during the first year of the project. All agents and systems
created for the Sensor Web utilize the API for
communication. Another project milestone was the
development of a ground-to-flight bus bridge to provide
seamless communication between agents existing on ground
platforms and agents existing on a flight platform simulator
or actual spacecraft (i.e. MidSTAR). SWAMO hides the
underlying implementation of the bus bridge from agent
communication via bridge interfaces built into the Telemetry
Agent. The Telemetry Agent handles all requests for
telemetry within SWAMO.

Two Telemetry Agent bridge interfaces were
implemented. The first is dependent on a previously
developed capability which enables communication between
components on a GMSEC ground system and cFE
applications on the flight platform. This capability is
achieved by utilizing the Advanced Spacecraft Integration
and System Test Software (ASIST), a real-time command
and control system for spacecraft development, integration,
and operations. ASIST listens to the GMSEC bus for
incoming directives, matches executed command mnemonics
to a command database, applies the CCSDS header, and
outputs a command packet to the Data Center (DC). The DC
forwards the command packet to the Command Ingest (CI)
application onboard the flight platform via User Datagram
Protocol Internet Protocol (UDP/IP). The CI application
receives the command packet and publishes the data onto the
cFE Software Bus. The Telemetry Output (TO) application is
setup to listen to the cFE bus traffic and to send any
messages that need to be delivered to a ground component.
On the downlink, TO receives a message from the cFE bus
and sends it to the DC via UDP/IP. The telemetry packet is
forwarded to ASIST where it is matched to a telemetry
database and decommutated to data points in a telemetry user
table. ASIST can then publish telemetry values to the
GMSEC bus on request.

The second interface was developed by the SWAMO
team to provide the capability to communicate with non-
CCSDS based telemetry data and without the requirement of
the ASIST system. A UDP bridge interface was created to
utilize the IP in space connection provided by the MidSTAR
satellite. A Telemetry Agent on the ground communicates
via UDP to a pier Telemetry Agent on board the flight
platform. The Telemetry Agent UDP interface has the ability
to add packet parser functionality based on mission specific
packet format. The parsers also utilize an XML configuration
file that provides mission specific mnemonic value
definitions. The received telemetry stream is parsed for the
mnemonic values and delivered to the requesting agents.

B. Agent Development
The current implementations of the SWAMO agents vary

in their level of maturity. Agents were implemented from the
bottom based on low level functional needs of the Sensor
Web. Reporting, model execution, telemetry data access, and
bus bridge capabilities had to be developed first before
higher level agents that handle sensor web goal
dissemination and model capability discovery can be
effective.
C. Model Development

Currently four models exist in the SWAMO Sensor Web.
Three of the models were utilized by the ROME framework
on the ST5 mission to support autonomous operations and.
These models where created with MATLAB/Simulink and
have been converted to stand alone executables for
integration into the SWAMO architecture. The ST5 models
are models of mission identified constrained resources and
include the Solid State Recorder, RF Link Margin, and
Power Subsystem.

The fourth model that is utilized in SWAMO is a reactive
power model created to address overheating battery issues
with the MidSTAR satellite. MidSTAR has a power positive
problem because of constant sunlight exposure to the solar
panels. Current operations involve MidSTAR operators
turning on and off two on board power amps to dissipate
power levels and cool the batteries. With guidance from the
MidSTAR team the model was created to mimic current
operations.

The model along with cFE, the Execution Agent, and the
Telemetry Agent were loaded onto the MidSTAR spacecraft
in late March. SWAMO is currently operating in a log only
mode, where all commanding actions that would be
performed by SWAMO are stored in log files on board for
downlink. As the log information is received, the MidSTAR
operators and the SWAMO team have been evaluating the
commands to ensure proper function of the model. An
updated version of the model was scheduled for uplink and
installation at the end of April and we will once again
operate in log mode. Once the model’s actions have been
validated, the SWAMO Sensor Web will be autonomously
controlling power management onboard the in-flight
MidSTAR satellite.
D. User Interface Development

The Reporting Agent provides an outside interface to the
SWAMO Sensor Web by allowing all SWAMO data to be
accessed (i.e. agent health and status information, software
bus traffic, and model output). This information is valuable
to both users and operators to get a picture of the events and
status of Sensor Web. An XML-RPC1 interface was built
into the Reporting Agent to provide web service call type
access. This allows for quick development of web based
graphical tools to more clearly illustrate SWAMO functions.

The current FLEX UI2 consists of two displays; Bus
Traffic Monitor and Agent Health Monitor. The bus traffic
monitor provides a log of all message generate via the
SWAMO bus. Users can query message header information
as well and drill down into the XML content of all messages.

1 XML-RPC standard web link - http://www.xmlrpc.com/
2 Adobe FLEX web link - http://www.adobe.com/devnet/flex/

This is a quick way to view events that occur in SWAMO.
The Agent Health Monitor provides a SWAMO Topology
representation of where agents exist in the SWAMO
environment (i.e. platform, IP address, etc). It also provides
information about the state of the agents (i.e. is the agent
producing heartbeats, what events have been generated by
the agent, when did the agent startup, etc).

V. USE CASE DEVELOPMENT

Several use cases have been developed to take
advantages of the functionality provided by SWAMO as well
as the flight platforms available to the project. Two platforms
are currently available to SWAMO and provide the
opportunity to demonstrate autonomous management actions
of ST5 FlatSat and the in flight MidSTAR satellite. The use
cases will utilize models of the two flight platforms to
autonomously manage constrained resources. The use case
for ST5 management will mimic the ST5 operations control
flow of the Solid State Recorder, but transfer the
responsibility of management activities to the web of
intelligent agents. The MidSTAR use case was created
during the SWMAO project and illustrates SWAMO
capabilities to not only manage multiple assets but also ease
the integration of new constrained resource models.
A. Predictive ST5 Solid State Recorder

During the mission life of ST5, ROME and a model of
the ST5 Solid State Recorder (SSR), helped to predict
recorder overflows so that corrective action could take place
in the Autonomous Mission Planning System (AMPS)3. The
ST5 SWAMO use case performs these same functions, but
utilizing the SWAMO Sensor Web. The Planning Agent
contains a timeline of events and commands for the ST5
FlatSat. The Planning Agent is activated at the Sentar facility
and connected to the SWAMO Software Bus. As events
occur in the timeline they are published to the bus for ingest
by subscribing agents. When the acquisition of signal (AOS)
event is published the Telemetry Agent requests telemetry
data based on mnemonics listed in the ST5 Telemetry Agent
configuration file. The Execution Agent responsible for the
management of the SSR model will then request a telemetry
stream of values specific to the SSR from the Telemetry
Agent. The SSR is a predictive model; therefore, simulations
are started and executed based on events in the timeline.
When the Planning Agent published at SSR execution event,
the SSR model is initialized by the Execution Agent with
current SSR telemetry values. The SSR model will generate
threshold violation times and values. The model will also
generate SSR command requests to release data at specific
times to avoid the threshold violations. When the model has
completed simulation the Execution Agent retrieves the
results and publishes them to the bus for subscribing agents.
The command request results are then ingested by the
Planning Agent and inserted into the running timeline. When
real time commands are encountered in the timeline and
published to the bus by the Planning Agent, they are
forwarded to the ASIST system. ASIST can then command
ST5 FlatSat. Commands to release data will be
autonomously generated by the SWAMO agent collaboration

3 AMPS GMSEC factsheet -

gmsec.gsfc.nasa.gov/factSheets/GMSECamps.pdf

and keep the ST5 SSR threshold violations from occurring
without operator intervention.
B. Reactive MidSTAR Power Management

The first phase of deployment onto MidSTAR occurred
3/10/2007 and included cFE, the Telemetry Agent, the
Execution Agent and the MidSTAR Power Model. The
power model will be utilized to regulate the MidSTAR
battery voltage and temperature. Start and shutdown scripts
for the SWAMO agent framework have been created and can
be manually controlled from the ground.

When the SWAMO agent framework is started, the
Telemetry Agent and Execution Agent are initialized. They
each load a configuration file and the Telemetry Agent’s
configuration specifies a UDP listen port number to receive
on board telemetry and a list of mnemonics to parse from the
telemetry stream. A current MidSTAR application, Sysmon,
will send telemetry to the predetermined port. The Execution
Agent’s configuration will specify what model to load
(Power Model), what mnemonics are required for that model,
and what “mode” to operate the model in (reactive or
predictive). The Execution Agent will then attempt to load
the specified model object and request the given mnemonics
from the SWAMO bus. The Telemetry Agent will receive
the request, check for the validity of the requested
mnemonics, and reply with a success or failure. If invalid
mnemonics are requested, a failure will be returned and the
request ignored. If the mnemonics are determined to be valid,
a success reply is returned and the Execution Agent’s request
information will be stored by the telemetry agent in a
Telemetry Requestor list. This list stores the requestors
name, type, unique id, and mnemonic list.

Each telemetry packet published by Sysmon, on 10
second intervals, to the Telemetry Agent is parsed for the full
set of Telemetry Agent configuration mnemonics and their
values stored in a Mnemonic Value Table. The Telemetry
Agent then iterates through its Telemetry Requestor list and
publishes a SWAMO Mnemonic Value message with the
updated value of each mnemonic to each requestor.

The Execution Agent will receive the Mnemonic Value
Messages and update the Power Model via a standardized
Model Interface. The power model now has access to live
telemetry. It is designed to be a state machine with 3 possible
states-- normal, medium, and high. These states are
determined by four battery voltage values received from the
Mnemonic Value Message. The model has the ability to turn
on and off two power amplifiers (A and B) on MidSTAR to
regulate the voltage and temperature.

The previously explained agent functions are also
mirrored on the ground with a Telemetry Agent, Execution
Agent, and Power model (via an Execution Agent). The
Telemetry Agent provides the data connection from
MidSTAR to the ground via a UDP forward from the ground
station. Although run in parallel the ground based model is
only accurate when in contact with MidSTAR and receiving
telemetry.
C. Future Development

The models fielded on MidSTAR are currently reactive
in nature. They observe, by subscribing to mnemonics, the
state of the batteries and solar panels. Based on observations,
the model takes action to prevent battery and power system
damage. While this is sufficient for the MidSTAR mission, it

lacks in applicability to other NASA missions. Most
missions require a planned timeline of events to manage the
spacecraft activity and systems.

To provide a relevant demonstration, the MidSTAR
system is going to have a planned management activity
added. This will allow the ground system to generate a power
management timeline, and synchronize that timeline with the
vehicle. The vehicle will prosecute the timeline, while
altering it to adapt to dynamic situations on the craft. Agents
will generate the timeline, in this case based upon solar
illumination predicts, and monitor the systems onboard.

While in contact with the ground systems, onboard agents
and operation center agents communicate to resolve
discrepancies. Ground based agents can then use any
information about the changes the onboard agents made to
make the timeline feasible to design better predicted
timelines in the future.

MidSTAR will be used to actively demonstrate power
system management. This case could apply to any mission,
but extends well to other vehicle systems. If the system were
a sensor, its management could be modeled in a similar way.
Not only does it extend to other spacecraft, it also applies to
the large variety of Earth sensing platforms such as
unmanned aerial vehicles, remote transponders, and sea
buoys.

VI. CONCLUSION

The architecture being built will enable a future
generation of coordinated science collection, collaboration,
and calibration. SWAMO is a piece of the Sensor Web
puzzle that will enable scientists to collect data in ways never
before possible. Standards based accessibility to data sources
drives new research with more fidelity. Sensor Webs provide
the ‘black box’ that insulates users from the nuances of
requesting data from disparate sources. With SWAMO, the
onus is on the agent infrastructure to negotiate for platform
resources to achieve a desired goal.

Initial prototypes and demonstrations are yielding
exciting results that indicate a successful outcome. By
utilizing the MidSTAR platform, and the FlatSat simulators,
we are making strides toward our infrastructure goals. With
demonstrations and operational capability, the SWAMO
effort has escalated from NASA Technology Readiness
Level (TRL) 3 to 6 in the past 18 months. Over the course of
the final 18 months, we expect to remain at 6, but to add
extensive capabilities to prove viability to developing
missions.

ACKNOWLEDGMENTS

This work is being performed under a NASA Earth
Science Technology Office (ESTO) Advanced Information
Systems Technology Grant. Thanks to Vicki Oxenham
(COTR), Steve Smith, and Karen Moe. Thanks also to the
other Principle Investigators on the other Sensor Web efforts
within the program for the collaborations that we share.
Special thanks also goes to Dr. Billy Smith of the U.S Naval
Academy for providing the SWAMO team with access to the
MidSTAR satellite. Additional thanks goes to Keith Hogie
and Ed Criscuolo, the MidSTAR operators, for their ongoing
support and past work for helping us get SWAMO on board
the spacecraft.

REFERENCES

[1] Mandl, D., Coyle, S., Shendock, R., Witt, K.J., Stanley, J.W.,
“Spacecraft Experiences of a Model- based Architecture
Controlling the ST5 Constellation, ”AIAA Infotech@Aerospace
2007 Conference and Exhibit”, AIAA-2007-2894, Rohnert
Park, California, 2007

[2] Mandl, D., Coyle, S., Shendock, R., Witt, K.J., Stanley, J.W.,
“Flying the ST5 Constellation with “Plug and Play” Autonomy
Components and the GMSEC bus, ”Ground System
Architecture Workshop 2006”, Session 8, Manhattan Beach,
California, 2006

[3] Space Technology 5 (ST5) Project Technology Validation
Report, ST5-495-586, 2006

